|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectjas.ai.ann.NeuralNetwork
public class NeuralNetwork
An implemntation of a three-layer artificial neural network. The learning mechanism is based on the error backpropagation.
Title: JAS
Description: Java Agent-based Simulation library
Copyright: 2003 Michele Sonnessa
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
Constructor Summary | |
---|---|
NeuralNetwork(boolean withBias,
int inputNodes,
int hiddenNodes,
int outputNodes)
Create a new artificial neural network. |
|
NeuralNetwork(java.io.File annFile)
Create a new artificial neural network loading parameters from the given file. |
Method Summary | |
---|---|
void |
assignNextDataSetSample()
Assign input and target values of the current data sample in the NeuralDataSet. |
NeuralDataSet |
createNeuralDataSet()
Create an empty dataset |
void |
evolve()
Not yet implemented. |
NodeLayer |
getHiddenLayer()
Return the current hidden layer. |
Jama.Matrix |
getHOWeights()
Return the current hidden/output weight matrix. |
Jama.Matrix |
getIHWeights()
Return the current input/hidden weight matrix. |
InputNodeLayer |
getInputLayer()
Return the current input layer. |
double |
getLearningRate()
Return the current learning rate. |
double |
getMomentum()
Return the current momentum rate. |
NeuralDataSet |
getNeuralDataSet()
Return the current data set. |
OutputNodeLayer |
getOutputLayer()
Return the current output layer. |
double |
getOutputValue(int nodeIndex)
Return the output value for the given node index. |
double[] |
getOutputVector()
Return the whole output vector |
boolean |
getRandomLearningSequence()
Return the current learning sequence order. |
OutputNodeLayer |
getTargetLayer()
Return the current target layer. |
boolean |
hasBias()
Tell if the ANN has got bias nodes or not. |
boolean |
isOutOfScale()
If one of the input passed values or one of the output values comes out of the min/max ranges this method alerts. |
void |
learn()
Make an epoch of training, analyzing each data sample. |
void |
pushDataInDataSet()
Append to the NeuralDataSet the current input/target value set. |
void |
pushDataInDataSet(boolean inTraining)
Append to the NeuralDataSet the current input/target value set. |
void |
randomizeWeights()
Randomize the Wih and Who weight matrixes, using the standard randomWeightsRange range (-0.3, 0.3). |
void |
randomizeWeights(double weightRange)
Randomize the Wih and Who weight matrixes, using the given range. |
boolean |
saveToFile(java.io.File annFile)
Save the ANN to an XML file, without saving the current data set. |
boolean |
saveToFile(java.io.File annFile,
boolean withDataSet)
Save the ANN to an XML file. |
void |
setInputValue(int nodeIndex,
double value)
Assign an input to a specific node, using an orginal scale. |
void |
setInputVector(double[] values)
Assign an array of values to the whole input layer, using an orginal scale. |
void |
setLearningParameters(double learningRate,
double momentum,
boolean randomLearningSequence)
Set the paramters used in the learning of the ANN. |
void |
setNeuralDataSet(NeuralDataSet nds)
Set a new neural data set to this ANN. |
void |
setTargetVector(double[] values)
Assign an array of values to the whole target layer, using an orginal scale. |
void |
think()
Compute the output values according to the current input ones. |
java.lang.String |
toStringWHO()
Create a string representation of the current WHO matrix. |
java.lang.String |
toStringWIH()
Create a string representation of the current WIH matrix. |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public NeuralNetwork(boolean withBias, int inputNodes, int hiddenNodes, int outputNodes)
withBias
- If true the input and hidden layers are created with a dummy node with constant value 1.0.inputNodes
- The number of nodes in the input layer (except the bias node).hiddenNodes
- The number of nodes in the hidden layer (except the bias node).outputNodes
- The number of nodes in the output layer.public NeuralNetwork(java.io.File annFile)
annFile
- An XML file containing ANN parameters.Method Detail |
---|
public void assignNextDataSetSample()
public NeuralDataSet createNeuralDataSet()
public void evolve()
public NodeLayer getHiddenLayer()
public Jama.Matrix getHOWeights()
public Jama.Matrix getIHWeights()
public InputNodeLayer getInputLayer()
public double getLearningRate()
public double getMomentum()
public NeuralDataSet getNeuralDataSet()
public OutputNodeLayer getOutputLayer()
public double getOutputValue(int nodeIndex)
nodeIndex
- The 0-based index of the output layer.
public double[] getOutputVector()
public boolean getRandomLearningSequence()
public OutputNodeLayer getTargetLayer()
public boolean hasBias()
public boolean isOutOfScale()
public void learn()
public void pushDataInDataSet()
public void pushDataInDataSet(boolean inTraining)
inTraining
- If true the sample is used during the learning, otherwise it will be used only
for testing.public void randomizeWeights()
public void randomizeWeights(double weightRange)
weightRange
- A double value representing the negative and positive bounds of the random range.
For instance, a value of 0.4 will generate weights uniformly random within the range [-0.4, 0.4].public boolean saveToFile(java.io.File annFile)
annFile
- A file (better if .xml) on the file system.public boolean saveToFile(java.io.File annFile, boolean withDataSet)
annFile
- A file (better if .xml) on the file system.withDataSet
- If true the XML file will contain the dataset, too. Otherwise only parameters and
weights are saved.public void setInputValue(int nodeIndex, double value)
nodeIndex
- The number of the node (bias is not considered: nodeIndex 0 corresponds to the first non-bias node).value
- The unscaled values for the node.public void setInputVector(double[] values)
values
- An array of double representing the input for each input node (bias is not considered).
java.lang.ArrayIndexOutOfBoundsException
- If values.length is not equal to the input vector length.public void setLearningParameters(double learningRate, double momentum, boolean randomLearningSequence)
learningRage
- (Epsilon) Is a double value between 0.0 and 1.0, representing the rate of changes in weights
at each learning step. The more the learningRage is higher the more the ANN adapts to data samples.momentum
- Represents the momentum effect in the learning algorithm. High momentum values (0.0 - 1.0)
keep the weight structure insensible to data changes.randomLearningSequence
- If true the learning algorithm selects randomly the sequence of data samples,
otherwise the sequence correspondes to the original data input order.public void setNeuralDataSet(NeuralDataSet nds)
nds
- The new neural data set for this ANN.public void setTargetVector(double[] values)
values
- An array of double representing the target for each target node.
java.lang.ArrayIndexOutOfBoundsException
- If values.length is not equal to the output vector length.public void think()
public java.lang.String toStringWHO()
public java.lang.String toStringWIH()
|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |