|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectjas.ai.ann.NeuralDataSet
public class NeuralDataSet
A datawarehouse for neural networks. It contains data to make ANN learning and testing.
Title: JAS
Description: Java Agent-based Simulation library
Copyright: 2003 Michele Sonnessa
This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
Field Summary | |
---|---|
static java.lang.String |
TAG_DS
|
Constructor Summary | |
---|---|
NeuralDataSet(int inputNodes,
int outputNodes)
Create a new neural data set with specified parameters. |
|
NeuralDataSet(int inputNodes,
int outputNodes,
java.util.Random randomizer)
Create a new neural data set with specified parameters. |
Method Summary | |
---|---|
void |
appendCurrentNNSample(NeuralNetwork nn)
Append current input/target values of the given ANN to the sample list. |
void |
appendCurrentNNSample(NeuralNetwork nn,
boolean useInTraining)
Append current input/target values of the given ANN to the sample list, with the given training attribute. |
void |
appendSample(double[] inputSet,
double[] targetSet)
|
void |
appendSample(double[] inputSet,
double[] targetSet,
boolean useInTraining)
Append data to the sample list. |
void |
assignCurrentNNSample(NeuralNetwork nn)
Assign to given ANN the current sample, according to the state of the iterator. |
void |
clearDataSet(int inputNodes,
int outputNodes)
Empty the data set. |
double[] |
getCurrentInputArray()
Return a copy of the current input layer. |
int |
getCurrentIteratorIndex()
Return the current index of the iterator. |
double[] |
getCurrentTargetArray()
Return a copy of the current target layer. |
Jama.Matrix |
getInputMinMaxMatrix()
Return a Jama.Matrix of minimum and maximum values for the input nodes. |
Jama.Matrix |
getTargetMinMaxMatrix()
Return a Jama.Matrix of minimum and maximum values for the target nodes. |
boolean |
isCurrentSampleInTraining()
Tell if the current sample is to be used in learning. |
boolean |
nextItem()
Move the iterator to the next element. |
boolean |
nextTrainingItem()
Move the iterator to the next element, which has the useInTraining attribute set to true. |
void |
randomizeDataSet()
Shuffle the sample list. |
void |
removeFirst()
Remove the first sample from the list. |
void |
removeFirst(int numberOfSamples)
Remove the first given number of samples from the list. |
void |
resetIterator()
Reset the iterator to the first element of the list. |
int |
size()
Return the current size of the sample list. |
void |
sortDataSetInOriginalSequence()
Reset the original sequence of the sample list. |
void |
XML_appendDataSet(org.w3c.dom.Document document,
org.w3c.dom.Node rootNode)
Write the whole data set into an XML document structure, below the given root node. |
void |
XML_extractDataSet(org.w3c.dom.Node rootNode)
Read the data set from an XML document structure, below the given root node. |
Methods inherited from class java.lang.Object |
---|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Field Detail |
---|
public static final java.lang.String TAG_DS
Constructor Detail |
---|
public NeuralDataSet(int inputNodes, int outputNodes)
inputNodes
- The number of input nodes in the ANN input layer.outputNodes
- The number of output nodes in the ANN output layer.public NeuralDataSet(int inputNodes, int outputNodes, java.util.Random randomizer)
inputNodes
- The number of input nodes in the ANN input layer.outputNodes
- The number of output nodes in the ANN output layer.randomizer
- A random generator used to shuffle the sample list.Method Detail |
---|
public void appendCurrentNNSample(NeuralNetwork nn)
nn
- The ANN from which data are taken.public void appendCurrentNNSample(NeuralNetwork nn, boolean useInTraining)
nn
- The ANN from which data are taken.useInTraining
- If true the sample will be used by the learning algorithm. If false it will be used
only during the testing.public void appendSample(double[] inputSet, double[] targetSet)
public void appendSample(double[] inputSet, double[] targetSet, boolean useInTraining)
inputSet
- An array representing the input layer.targetSet
- An array representing the output expected layer.useInTraining
- Use in training or not.
java.lang.ArrayIndexOutOfBoundsException
- If inputSet or targetSet length does not match with input/output length
of the ANN.public void assignCurrentNNSample(NeuralNetwork nn)
nn
- The target ANN.public void clearDataSet(int inputNodes, int outputNodes)
inputNodes
- The new input layer length.outputNodes
- The new output layer length.public double[] getCurrentInputArray()
public int getCurrentIteratorIndex()
public double[] getCurrentTargetArray()
public Jama.Matrix getInputMinMaxMatrix()
public Jama.Matrix getTargetMinMaxMatrix()
public boolean isCurrentSampleInTraining()
public boolean nextItem()
public boolean nextTrainingItem()
public void randomizeDataSet()
public void removeFirst()
public void removeFirst(int numberOfSamples)
numberOfSamples
- The first number of samples to be removed.public void resetIterator()
public int size()
public void sortDataSetInOriginalSequence()
public void XML_appendDataSet(org.w3c.dom.Document document, org.w3c.dom.Node rootNode)
document
- A well-formed XML document.rootNode
- The root node for the data set structure.public void XML_extractDataSet(org.w3c.dom.Node rootNode)
rootNode
- The root node for the data set structure.
|
||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES All Classes | |||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |