jas.ai.ga
Class GeneticAlgorithm
java.lang.Object
jas.ai.ga.GeneticAlgorithm
- All Implemented Interfaces:
- IDecoder
public class GeneticAlgorithm
- extends java.lang.Object
- implements IDecoder
A genetic algorithm evolver.
Title: JAS
Description: Java Agent-based Simulation library
Copyright (C) 2002 Michele Sonnessa
This library is free software; you can redistribute it and/or modify it under the terms
of the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307, USA.
- Author:
- Gianluigi Ferraris (original c code), Michele Sonnessa and Gianluigi Ferraris (java porting)
Constructor Summary |
GeneticAlgorithm(int rulesNumber,
int ruleLength)
|
GeneticAlgorithm(int rulesNumber,
int ruleLength,
double turnoverRate,
double crossoverRate,
double mutationRate,
boolean normalizeFitness)
|
Methods inherited from class java.lang.Object |
equals, getClass, hashCode, notify, notifyAll, wait, wait, wait |
DEFAULT_CROSSOVER_RATE
public static final double DEFAULT_CROSSOVER_RATE
- See Also:
- Constant Field Values
DEFAULT_MUTATION_RATE
public static final double DEFAULT_MUTATION_RATE
- See Also:
- Constant Field Values
DEFAULT_NORMALIZE_FITNESS
public static final boolean DEFAULT_NORMALIZE_FITNESS
- See Also:
- Constant Field Values
DEFAULT_TURNOVER_RATE
public static final double DEFAULT_TURNOVER_RATE
- See Also:
- Constant Field Values
GeneticAlgorithm
public GeneticAlgorithm(int rulesNumber,
int ruleLength)
GeneticAlgorithm
public GeneticAlgorithm(int rulesNumber,
int ruleLength,
double turnoverRate,
double crossoverRate,
double mutationRate,
boolean normalizeFitness)
evolve
public void evolve()
- Specified by:
evolve
in interface IDecoder
getAutoEvolution
public boolean getAutoEvolution()
getBestRule
public GARule getBestRule()
getConvergence
public double getConvergence()
getCrossoverRate
public double getCrossoverRate()
getCrossovers
public int getCrossovers()
getCurrentFitness
public double getCurrentFitness()
getCurrentRule
public GARule getCurrentRule()
getEvolutions
public int getEvolutions()
getMaxFitness
public double getMaxFitness()
getMeanFitness
public double getMeanFitness()
getMinFitness
public double getMinFitness()
getMostDiffusedRule
public GARule getMostDiffusedRule()
getMutationRate
public double getMutationRate()
getMutations
public int getMutations()
getNormalizeFitness
public boolean getNormalizeFitness()
getSumFitness
public double getSumFitness()
getTurnoverRate
public double getTurnoverRate()
getWorstRule
public GARule getWorstRule()
learn
public void learn()
- Specified by:
learn
in interface IDecoder
setARule
public void setARule(GARule rule)
setAutoEvolution
public void setAutoEvolution(boolean aE)
setCrossoverRate
public void setCrossoverRate(double cR)
setMutationRate
public void setMutationRate(double mR)
setNormalizeFitness
public void setNormalizeFitness(boolean nF)
setReward
public void setReward(double fV)
setReward
public void setReward(GARule rule,
double fV)
setTurnoverRate
public void setTurnoverRate(double tR)
setWorstRule
public void setWorstRule(GARule rule)
step
public GARule step()
think
public void think()
- Specified by:
think
in interface IDecoder
toString
public java.lang.String toString()
- Overrides:
toString
in class java.lang.Object
verify
public void verify()