
JAS library
Java Agent-based Simulation library

Version 1.0

User's Guide

http://jaslibrary.sourceforge.net

Michele Sonnessa
(sonnessa@di.unito.it)

JAS User’s Guide Last revision: 29 April 2004

Copyright Notice:
JASLibrary v.1.0 - A Java Agent-based Simulation Library
Copyleft 2002-2004 Michele Sonnessa

This library is free software; you can redistribute it and/or modify it under the terms of the GNU
Lesser General Public License as published by the Free Software Foundation; either version 2.1 of
the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with this
library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA

Michele Sonnessa
University of Torino
Department of Computer Science
Corso Svizzera 185
Torino - Italia
(sonnessa@di.unito.it)

2

JAS User’s Guide Last revision: 29 April 2004

Index

JAS library 1

User's Guide 1

Introduction 4
The JAS features 5
The JAS engine 5
The external libraries 5

Installing JAS 7

Installing the sources and recompiling JAS 8

The JAS simulation environment 10
The JAS tool bar 11
The JAS menu 12
The File menu 12
The Simulation menu 12
The Tools menu 13
Help 13
The JAS Project Properties dialog box 14
The JAS Project tree panel 16
The JAS engine status dialog box 16
The JAS Properties window 19
The JAS built-in graphical output console 20

The JAS tools 21
The Parameter bug editor 21
The JAS graph editor 22
The HSQL Database manager 23

3

JAS User’s Guide Last revision: 29 April 2004

Introduction
JAS is a simulation toolkit, specifically designed for agent based simulation modelling.
Agent based models are representations of dynamic social systems realised through object-
oriented computer programs. For a detailed introduction on ABM see the working papers
section at http://www.santafe.edu.

JAS is a clone of the Swarm library, an ABM framework originally developed by the Santa
Fe Institute for creating multi-agent simulations of complex adaptive systems. Until
recently the Swarm project was based at the Santa Fe Institute. The development and
management of Swarm is now under control of the Swarm Development Group.
(http://wiki.swarm.org)

The libraries were originally written in Objective C. In order to make them more standard
the SDG developed a Java extension, too.

According to the Swarm experience, we can assert that the most promising approach to
develop AB models is represented by the use of object-oriented programming (OOP). So
JAS does not define a domain-specific language: it provides the user a collection of ready
to use widgets and a set of rules of thumbs to build such kind of simulations.

The JAS tools can be easily embedded in the users' models, reducing the code complexity.

Building JAS, we did not want to create a brand new way of building agent based models,
but somewhat a rich and open collection of libraries to help researcher to create models
and share them in an easy way. Many of the library contained in JAS have been based on
open source, reliable and well tested third-party libraries.

In the JAS architecture, agents are organized and managed by fundamental components,
called models. A model is a Java class inheriting from jas.engine.SimModel, creating a
collection of agents with a schedule of events over those agents. JAS is able to execute more
than one model at time. In fact the scheduler is unique and each model shares it. This
allows to create complex structures whereby agents of different models can interact with
each other.

A good Swarm tutorial by Hala Al-Bakour and Sheri Markose1 says that:
The Swarm architecture is based on an internal model Swarm and an external observer
Swarm. These two aspects of the artificial world is clearly separated in the Swarm system.
The objective of the special 'observer' agents is to observe other objects via the probe
interface. These objects can provide both real-time data presentation and storage of data
for later analysis. The observer agents are actually swarms (a group of agents and a
schedule of activity) and a complete experimental framework is obtained by combining the
model and observer apparatus.

The distinction between model and observer is a very useful paradigm and JAS protocol
suggests to use this approach, too. Technically it can be implemented simply defining two
models (two classes inheriting from SimModel), with one of them playing the role of the
observer.

The present guide suggests a step-by-step procedure in building agent-based models with
JAS. Following the suggestions the user might obtain benefits in models portability.

1 http://www.essex.ac.uk/ccfea/swarm/SwarmTutorial/web/documents/swarm_tutorial.htm

4

JAS User’s Guide Last revision: 29 April 2004

The JAS features
Actually JAS provides the following features:

• It is based on a discrete-event time simulation engine.
• Thanks to a custom Java class-loader, JAS can load models without configuring the

CLASSPATH environment variable.
• It is able to represent different time units (ticks, seconds, minutes, days...).
• It is equipped with a real-time engine, which can be used to implement emulation

models. It is able to fire events using the real computer timer.
• It supports the XML for data input/output operations and the SVG graphic format.
• It provides a genetic algorithms library as well as an artificial neural networks one

(classifier systems are still under construction).
• JAS provides an implementation of the Sim2Web architecture: a JAS-Zope bridge

for web publishing of simulations and remote users interaction.
• The MultiRun class manages repetitive executions of a model in order to support

automatic parameters calibration.
• It provides a powerful statistical package, based on the cern.jet package. Statistical

data can be automatically collected in a database, thanks to the JAS database
features.

• Hypersonic database is built-in the JAS package.
• The brand new jas.graph package allows to manage relational agents, supported by

built-in Social Network Analysis functions.

The JAS engine
The core of the JAS toolkit is represented by the simulation engine. It is based on the
standard discrete-event simulation paradigm, which allows to manage the time with high
precision and multi-scale perspective. We like to stress the important difference between
discrete-time and discrete-event time representation. The tools implementing discrete-
time engines, like Swarm, are particularly fast in models characterized by loops of events.
They are discrete representation of continues time models. When the events happens at
different time scales the discrete-time representation is more inefficient than the discrete-
event paradigm.

Thanks to its discrete-event engine, JAS represents a good compromise in simulating both
discrete and continues agent-based models.

The external libraries
JAS project is an example of the interoperability and code re-utilisation the Open Source
world makes possible: it is useless to reinvent the wheel every time we need a functionality!

The JAS library contains the following third-party libraries:

• The PtPlot library (http://ptolemy.eecs.berkeley.edu/java/ptplot/) is used to plot
variables over time. JAS provides some wrapper classes mapping the statistical objects'
interface to the plotters.

• The COLT library (http://hoschek.home.cern.ch/hoschek/colt/) is the random number
generation engine used by JAS. Moreover it is largely used in statistical computers.

• The Metouia Look&Feel library (http://mlf.sourceforge.net/) is the look & feel JAS GUI
is based on.

5

JAS User’s Guide Last revision: 29 April 2004

• The Apache SVG Batik library (http://xml.apache.org/batik/) provides JAS the
capability to generate SVG images. It is used by the Sim2Web implementation
(http://wf.econ.unito.it/sim2web).

• The JExcelApi library (http://www.andykhan.com/jexcelapi/index.html) is used to
access Microsoft Excel spreadsheet. It is particularly useful to retrieve simulation
parameters from a spreadsheet.

• The JGraphT library (http://jgrapht.sourceforge.net/) has been used to develop the JAS
graph implementation.

• The Apache XML-RPC library (http://ws.apache.org/xmlrpc/) is used int JAS
implementation of the Sim2Web architecture.

• The HSQLDB library (http://hsqldb.sourceforge.net/) is the standard database engine
used by JAS.

6

JAS User’s Guide Last revision: 29 April 2004

Installing JAS
Before downloading and installing JAS, it is necessary to check that the Sun's Java
Development Kit (JDK) is present on the target machine and that its version is the 1.4 or
higher.

JAS may run also with the Java Runtime Environment (JRE), but this solution does not
permit to compile the simulation models.

Both the JDK and the JRE are available at the Sun Microsystem's web site:
http://java.sun.com.

With the java environment installed on the target machine, the user can install JAS, simply
unpacking the zipped jas package to a target directory.

Once JAS has been unpacked, the target directory will contain a root directory called 'JAS'.

The JAS root directory is organized as the tree in figure 1.

figure 1 The JAS directory tree

The JAS.jar file represents both the JAS application and the collection of libraries used by
simulation models.

The examples subdirectory contains the standard example models.

The doc directory contains all the documentation, with the standard API of the JAS library
and the APIs of the third-party libraries, distributed with JAS. All the documentation is
directly accessible from the JAS program menu.

The projects subdirectory is a repository for the user’s models. See the @@DIR

Once JAS is installed it can be executed typing the following command from the system
console at the JAS root directory2.

java -jar JAS.jar

2 The standard Java installation often does not set the java binaries directory in the machine general path,. If the
command does not work, please append to the PATH environment variable the path to reach the bin directory under
the java main directory. See the java documentation for more details.

7

JAS.jar

JAS

examples

doc

projects

JAS User’s Guide Last revision: 29 April 2004

Installing the sources and recompiling JAS
JAS can be compiled starting from the latest sources. The sources can be downloaded from
the JAS download site or retrieved from the CVS repository.

Suppose JAS is already installed. We will call <JAS> the JAS main program directory. The
following procedures describe how to obtain the sources using the original source package
or the CVS server:

download the source compressed package and expand it in the <JAS> directory;

check out the “JAS” module from the cvs.sourceforge.net:/cvsroot/jaslibrary CVS server
into the parent of the <JAS> directory, if you want to have a nightly build.

After both the above operations, the user will find the following new directories in the
<JAS> directory tree:

The build directory contains the build.xml file which is the make file used by the Java Ant
system to compile java sources.

The libs directory contains the third-party libraries which are included into the final
JAS.jar package.

The src directory contains the java source files of JAS.

In order to compile JAS it is necessary to install the Apache Java Ant make system. It is
available at the http://ant.apache.org/ website.

Once Ant is installed, go to the <JAS> directory and type the following commands from the
system terminal:

cd build
ant

8

JAS

build

libs

src

WINDOWS USERS ONLY: In Windows environments java executables should be also
executable by double-clicking on the jar file.

JAS User’s Guide Last revision: 29 April 2004

JAS has been developed with the IBM Eclipse IDE, an open source Java IDE. You can
download it at http://www.eclipse.org. Eclipse is able to interpret the ant commands and
through it the user can compile JAS without using the Java Ant.

In order to develop JAS with Eclipse, it is simply necessary to create a new project and
point it to the <JAS> directory. Eclipse will automatically find all the dependencies.

9

JAS User’s Guide Last revision: 29 April 2004

The JAS simulation environment
The JAS simulation environment is an application, through which the user can execute
simulation experiments, loading models and controlling their execution.

Although a model may be executed defining a main method and using it as any other Java
application, JAS is able to manage XML project files that are used to automatically load
and execute simulation models.

An XML project file contains the path where the binaries of the model are placed, some
important parameters and the list of the models to be executed. These are the information
JAS needs to load a model and control its execution.

figure 2 The JAS simulation environment

The main panel of JAS is shown in figure 2. The simulation environment is made of:

• a menu through which the user may access all the program options,

• a tool bar with some shortcut to mostly used commands,

• a slider command to control simulation speed,

• a bar indicating the current simulation time,

• an output console window, grabbing and showing all the messages coming from the
system output streams (stdout and sterr),

• a content pane, containing the windows created and managed by the simulation model.

10

JAS User’s Guide Last revision: 29 April 2004

The JAS tool bar
The tool bar contains the following buttons:

”Open project” button opens a simulation experiment project file from disk

“Build models” button orders to JAS to invoke the buildModel() method of each
currently loaded model.

“Rebuild models” button order to the JAS engine to dispose the current simulation
and return to the initial conditions.

“Start simulation” button starts the simulation engine, executing the models until a
stop event is raised.

“Make one step” button asks JAS engine to raise the next event scheduled in the
event list.

“Go to the next time unit” button causes the engine to execute all the operations
scheduled at current time. If more than one events are scheduled at the same time,
this command cause their execution, while pressing the “Make one step” button JAS
executes only the first of them.

“Pause simulation” button puts the simulation engine in a paused mode. The
experiment may continue by pressing one of the start/step buttons.

“Stop simulation” button pauses the simulation and terminate the experiment.
Technically the simulationEnd() method of the current models is called. The
simulation may be anyway continued pressing “start” but its behaviour will depend
on how the modeller managed the simulationEnd() method.

To the right of the execution buttons the tool bar provides
a slider control which allows the user to control the
execution speed. The speed can be set to a value between 0
and 200 milliseconds. When the slider is set to 0, JAS
executes the simulation at the maximum computer speed.

Where it is set to a value greater than 0, JAS waits for the
specified number of milliseconds before raising each event
in the event list.

At the bottom of the tool bar there is a panel indicating the current simulation time. It is
expressed using the current simulation time unit.

11

JAS User’s Guide Last revision: 29 April 2004

The JAS menu
The following paragraphs describe the commands in the main menu.

The File menu

Submenu Description

New project creates a new XML project file. Through it, JAS creates an XML file
containing the models to be loaded, the class paths, the simulation
parameters and a short description.

Open project opens a previously created project file, with the extension “.sprj.xml”.
During the opening of the project file, JAS loads models into memory
and invokes their setParameters() method.

Save project saves the current project. If it has been just created, JAS will ask where
to save the file, otherwise it overwrites the existing one.

Save project as saves the current project within a new file

Close project disposes each running model and close the current project file.

Edit project opens the “project properties“ windows, through which the XML
project file can be edited.

Compile project this command execute the “javac” command passing to it the class
paths to recompile the current project. If the java development kit has
not properly configured this command may not work. In fact, the javac
command must be accessible from the terminal (or command prompt)
window from everywhere in the file system. See the installation section
for more details. The results of the compilation are shown in the
console output.

[Most recently
used list]:

JAS stores the last five opened projects. Simply clicking on one of them
the project is automatically processed by JAS.

Quit closes the application

The Simulation menu

Submenu Description

Build makes JAS to invoke the buildModel() method of each currently loaded
model.

12

JAS User’s Guide Last revision: 29 April 2004

Restart closes each running model and reload it. During this operation JAS
invokes the Java Garbage Collector to free the unused memory and flush
the class loader cache, in a way that models are reloaded from the file
system. This means that if the model has been recompiled while it is in
the Java memory, pressing the reload menu item the last version of the
classes will be loaded in memory.

After a restarting, the global variable Sim.currentRunNumber is
increased. It allows the programmer to manage the storing of data to a
file, by keeping track of the different runs.

Play starts simulation

Step see the “Make one step” button in the tool bar

Time step see the “Go to the next time unit” button in the tool bar

Pause see the “Pause simulation” button in the tool bar

Stop see the “Stop simulation” button in the tool bar

Show engine
status

see the “Show engine status” button in the tool bar.

The Tools menu

Submenu Description

Parameter
designer

opens the “parameter designer tool”, which is used to design XML
parameter bag files. See the developer guides for more details.

Graph editor opens a graph editor window. See the developer guides for more
details.

Database editor opens the HSQL database manager. See the developer guides for more
details.

JAS options opens a “parameters windows”, from which is possible to set a
particular directory where to store simulation models.

The Help menu

Submenu Description

API documentation opens the Application Programming Interface documentation of
JAS in the standard javadoc format.

API libraries contains the API documentation for the libraries distributed
with the JAS package.

JAS web site points to the official JAS web site

About opens the about box, where there are licensing information, a
list of current java environment variables and the number of the
current JAS engine version.

13

JAS User’s Guide Last revision: 29 April 2004

14

JAS User’s Guide Last revision: 29 April 2004

The JAS Project Properties dialog box
The “Project properties” windows can be called by clicking on the “File/New” menu item,
to build a new XML project file. In order to edit a previous created file it is necessary to
open the project and then click the “File/Edit project” menu item.

The figure 3 shows how the dialog window appears when the user creates a new project.
The field “Project name” contains the name of the project.

The “Time unit” combo box specify which time unit JAS must use when it loads this
project. the During the simulation, the time will be expressed using the chosen the chosen
time unit. It is important to notice that using the absolute time representation in
scheduling events, the time unit does only affect the format in which time is represented by
the JAS Control Panel.

Otherwise, in case the events are scheduled using the methods of the jas.engine.SimTime
class the distance between two events is measured using the selected time unit. See the
“Time representation” section for more details about time management in JAS.

figure 3 The JAS Project properties window.

The “Runs in real time mode” check box allows the user to specify which event list manager
JAS will use during the simulation. When real time mode is enabled, events scheduled in
specific time in the future will happen only when the computer’s clock is equal or greater
than the scheduled time. The real time is very useful to execute simulation models
interacting with real interfaces as humans or robots or other computers on the network.

The “Seed generation” combo box is used to set the way the random number generator
used by the Sim class initialise the seed number. If the user sets the “Random” mode, the
next parameter is ignored and the seed number is set randomly each time a model is
loaded in memory.

Otherwise, if the generation mode is “Fixed”, the seed number set at the beginning of each
simulation will be set to the specified “Seed number”.

The “Models” and “ClassPath” tabs, shown in figure 4, are used to tell JAS which models
the engine has to manage during the simulation and where to find the compiled classes
(the .class files).

15

JAS User’s Guide Last revision: 29 April 2004

In case the model has not been typed yet, the user can use the “Add model” button,
specifying the name of the model. JAS asks the user if he/she wants that JAS generates the
skeleton code for the new class.

Usually the creation of the project is made, after the code has been typed and compiled yet.
In this case the user can select the model browsing the file system.

figure 4 The models and class paths.

Usually the creation of the project is made, after the code has been typed and compiled yet.
In this case the user can select the model browsing the file system.

If JAS did not add automatically the class path in the “ClassPath” list, it is necessary to add
all the directories where the classes used by the simulation are stored.

If the model makes use of some Java libraries, it is possible to add jar files to the class path.

The declaration of the paths where classes are is the way JAS’ dynamic class loader
searches for binaries during the simulation.

Usually Java coders have to put the paths to find classes in the system environment
variable called “CLASSPATH”, in a way the Java default class loader could find the needed
binaries.

This operation is boring and requires to know which models you want to execute before
starting the Java Virtual Machine.

JAS bypass the problem using the XML project file and its custom class loader.

Once a new project has completely described through the project dialog box, the user can
save directly the project or try to load it in memory to test if it works, pressing the “Load
project” button.

16

JAS User’s Guide Last revision: 29 April 2004

The JAS Project tree panel
When the user loads a project file, JAS shows on the left side of the simulation
environment a tree panel similar to the one in figure 5.

The project tree panel gives the user a short view on:

• the list of java files contained in the directories specified by the ClassPath section in the
project file. Each file can be directly edited by double-clicking on it. JAS is not equipped
with a code editor, although it allows the user to define a default code editor in the 'JAS
Options' window (See JAS options description for more details);

• the list of models specified the Model section of the project file. By double-clicking on a
model item JAS opens a probe on the current instance of the model;

• the list of windows whose position is currently managed by JAS (the windows added
using the addSimWindow() method in buildModel() method).

The tree panel can be hidden or resized dragging the bar on the right or using the arrows
on the top of the bar.

figure 5 A view of the project tree panel.

The JAS engine status dialog box
The JAS simulation environment is a graphical interface interacting with the JAS
simulation engine. The jas.engine.SimEngine class is manages the execution of the
simulation model, so it is very important to have the possibility to look at its current status.

The engine status dialog box, shown in figure 6 and in figure 7, gives the user a lot of
information. It monitors the seed number used to synchronize the random generator at the
beginning of the simulation and it can be changed directly, modifying the value or
generating a new one through the “Generate seed” button.

17

JAS User’s Guide Last revision: 29 April 2004

The “Time unit” combo box shows the current time unit and allows the user to change it.
Let’s notice that changing the time unit may result in a unpredictable results if the model is
based on a specific time representation.

The “Run” field counts how many times the current model has been restarted. It may be
changed manually and it is useful for the modeller to store simulation outcomes in
different output files using the current simulation run counter.

18

figure 6 The engine status dialog box

figure 7 The event list status

JAS User’s Guide Last revision: 29 April 2004

The “Event list” tab shows the current status of the engine core object: the eventList.
Through this view the user can check which is the sequence of events will be fired at the
next simulation step. The events are represented by a string beginning with the @
character indicating the absolute time of the event and a string relative to the instruction
will be invoked during the event firing.

In case the event is a group of events (jas.events.SimGroup) the event is represented by a
folder containing the list of the events in the group.

When this dialog box is opened the simulation engine is stopped and the execution can be
performed only step by step, pressing the step button: this is due to synchronization
problems during the inspection of the eventList by the graphic viewer.

19

JAS User’s Guide Last revision: 29 April 2004

The JAS Properties window

The JAS properties window is accessible clicking on the Tools\JAS options menu item.

JAS comes with a projects directory within its installation path, even if the user can define
another path to store her own projects.

The definition of a project file is useful when a model has to be send to another user. In
fact, JAS stores relative paths to the file when they are under the JAS root directory or
when they are under the user projects directory. Saving a model outside these folders, the
XML project file will contain absolute paths, causing some problems when the model is
copied on other machines.

So if the user saves his/her models in the JAS\projects directory the “Projects directory”
option is not to be set, otherwise the user has to specify the path for the custom folder.

Through this window the user can set the default application used to edit the source code
when she/he clicks on a file from the project tree.

NOTICE: The external source code editor is opened by JAS passing to the operating system
a command with the executable path and the file to be updated, as parameter. If the editor
does not accept parameters from the command line it cannot be used with JAS.

20

JAS User’s Guide Last revision: 29 April 2004

The JAS built-in graphical output console

The ouput console grabs the standard I/O streams and shows them in the built-in text
area. The java System.in and System.err streams are redirected to the output console. So
the JAS simulation environment is able to show the console outputs. This feature is
particularly useful when JAS is executed via the javaw command which bypasses the
system output console (actually this command is only available on Windows platforms).

The console appends continuously the outputs received from the streams. It the user wants

to freeze the output windows, she has simply to press the button. When the button
with the glass icon is not in a pressed state the output windows stops grabbing system
output.

The button allows to clear the whole content of the window.

The button allows to save the current content of the window to disk.

The output window cannot be disposed, but it can be iconfied. Notice that when iconified

the window continues in grabbing output, if the button is pressed.

21

