
JAS how to documentation Last revision: 14/07/04

How to use jas.statistics package
Michele Sonnessa

(sonnessa@di.unito.it)

1.How JAS retrieves data from objects.. 2
2.The encapsulation system.. 4
3.How statistics are updated... 6
4.CrossSection object... 7
5.The Series object... 8
6.The statistic functions..9

1

JAS how to documentation Last revision: 14/07/04

The jas.statistic package is a statistical library specifically designed to be executed in a
simulation context. Since data sets collected from simulations are frequently updated and
sometimes data structures change at runtime, the code is optimize to reduce memory
occupancy and CPU time consumption.

The present guide shows step by step the package features and its use.
 The package structure is composed by three sections:
1. the jas.statistics package contains the main interfaces and classes;
2. the jas.statistics.reflectors package contains classes that retrieve data from common java

objects;
3. the jas.statistics.functions package contains the functions that compute statistics on data

sets. The statistics computing algorithms are mainly based on the cern.jet.stat
package.

2

JAS how to documentation Last revision: 14/07/04

1. How JAS retrieves data from objects
In order to compute statistics, a statistical computer must be able to dynamically

collect data from simulation objects. It represents a problem, since the statistical library
classes do not know the structure of the target objects (designed by users) and so they cannot
access their internal data using instructions like myObject.getDatum().

The easiest solution to solve the problem is represented by the use of the reflectors
contained by the jas.statistics.refelectors package. These classes use the Java Reflection to
inspect dynamically the target objects’ structure and data.

Let’s consider an example. An agent represented by the class MyAgent contains two
integer variables called age and children, as described by the following code:

public class MyAgent {
int income, age;

}

Suppose that the user needs to create a time series of the variable income for this agent.
A typical instruction could be:

MyAgent myAgent = new MyAgent();
Series.Integer series = new Series.Integer(myAgent, “income”, false /*a var*/);

The constructor of the Series.Integer class automatically creates an IntegerInvoker
object that reads the income variable within an instance of the MyAgent class. This way,
every time the time series object has to be updated (with the updateSource() method), the
current value of agent’s income is appended to the series internal data array.

The reflection mechanism is very simple and elegant but, unfortunately, very
inefficient, since it is about 20 time slower than a native direct access! So, in order to
increase the speed1, we need to access objects natively.

JAS defines a method, for direct access, based on the I*Source2 interfaces. Each object
containing interesting data to be collected should implement one or more of the following
interfaces, according to the type of data to be provided.

Single value output Multiple value output (array)
IDoubleSource IDoubleArraySource
IFloatSource IFloatArraySource
ILongSource ILongArraySource
IIntSource IIntArraySource

In order to use these interfaces to natively access data inside the MyAgent class, its code has
to be modified as follows:

1 The use of the direct access method improves also the accuracy of the java exception catching.
2 With the I*Source notation, we intend all the interfaces ending with the “Source” string, like IDoubleSource,
IFloatSource, …, IIntArraySource, ..., contained in the jas.statistics package.

3

JAS how to documentation Last revision: 14/07/04

public class MyAgent implements jas.statistics.IIntSource {
public static final int AGE = 0;
public static final int INCOME = 1;
int income, age;
public int getIntValue(int variableID)

 {
switch (variableID)
{
case AGE: return age;
case INCOME: return income;

}
}

}

The series object previously defined can be now created using the following instructions:

MyAgent myAgent = new MyAgent();
Series series = new Series.Integer(myAgent, MyAgent.INCOME);

This way, the series object will now access the target object’s variables through its IIntSource
interface, simply by passing to its getIntValue method the right constant value
(MyAgent.INCOME).
Although boring, this mechanism is more efficient than the previous one. It is recommended
for long run simulations. However, the choice between using the reflection or the native
access is left to the user.

4

myAgent 1 myAgent 2 myAgent n

IntInvoker IntInvoker IntInvoker

CrossSection

MeanArrayFunction

Series MovingAverageFunction

Single value
Array of values

JAS how to documentation Last revision: 14/07/04

2. The encapsulation system
The I*Source interfaces are used to sequentially encapsulate different computational

operations.
Suppose you want to compute, at every simulation time step, the moving average of

the mean value of the agents’ income. This value might be useful, for instance, to understand
if the simulation reached an equilibrium.

In order to obtain the moving average we need to perform the following jobs, at each
simulation time step:

1. collect data from all the agents contained in a list;
2. compute the average value of the collected data;
3. store the value into a time series object;
4. using the series, compute the current moving average.

Thanks to the encapsulation system we can create a stack of operations and then
obtain the value simply invoking one method. The figure below shows how to build the
moving average computer.

Don’t worry! The code to build this operation is simpler than its visual representation,
as shown by the following instructions:

CrossSection.Integer crossSection =
new CrossSection.Integer(agentList, “income”, false);3

Series.Double series = new Series.Double(new MeanFunction(crossSection));
MovingAverageArrayFunction ma =

new MovingAverageArrayFunction(series, 3 /*moving average window*/);

Every time the ma object receives the updateSource() command, the entire stack is
automatically updated and the current moving average of the last three periods becomes
available.

A comprehensive schema of the encapsulation system is shown in the following figure.

3 If MyAgent implements the IIntSource interface the instruction becomes:
CrossSection.Integer crossSection =

new CrossSection.Integer(agentList, MyAgent.AGE);
5

I*Source I*Source I*Source I*Source

CrossSection.*

I*ArraySource

I*Source

Series.*

I*ArraySource

I*Source

*TraceFunction

I*Source

IAgentIdArray

*ArrayFunction

*ArrayFunction

Array

Value

JAS how to documentation Last revision: 14/07/04

The statistic computers can return single values, via the I*Source interface, and array
of values, via the I*ArraySource one. A data source can be processed by a *Function4 object,
which applies the function and return a value, via an I*Source interface.

Every time an object implements an I*Source interface it can be inserted in the
encapsulation stack as a source of data used by the subsequent consumer in the stack. The
encapsulation allows an infinite number of operations to be sequentially executed, with a
single update operation.

It is very important to point out that each array consumer object must receive as
source an array source data, while single value consumers work only with single values
sources.

The functions contained by the jas.statistics.functions package are divided in two main
groups:

The *ArrayFunction objects work with I*ArraySource sources which are refresh at
every updateSource() call.

The *TraceFunction objects work with single value sources (I*Source). Obviously a
single value cannot be used to create a statistics, so these functions trace the value over time.
For instance, the MeanTraceFunction computes the average value, by storing the sum and
the count of the values it receives over time.

4 With the *Function notation we intend all the functions inheriting from the AbstractFunction, contained in the
jas.statistics.functions package.

6

JAS how to documentation Last revision: 14/07/04

3. How statistics are updated
If user had to update all the elements in the encapsulation system, the system would

be very complex to be managed. In the previous example, the reader should update the
crossSection object, than the series and finally the ma one, to obtain the moving average.

Fortunately, JAS automatically updates the statistical widgets, using the
IUpdatableSource interface. Each statistical computer which retrieves data from an I*Source
source, checks if the source implements the IUpdatableSource interface and, if it does,
updates it before reading data.

Through this method each object in the stack is recursively updated. This makes
statistics very easy to be managed, but it may cause some problems when the same source is
present in more than one stack. In this case it would be updated twice or more. Imagine a
situation in which a time series is forced to be updated two times in the same simulation step,
it would append twice the current data.

JAS avoids this possible drawback checking the simulation time before invoking the
updateSource(), ignoring objects already updated. Obviously this choice does not permit to
refresh data more than once per simulation step. In order to bypass this constraint, the user
has to explicitly set to false the checkingTime property of the statistics computer.

Trying to summarize the updating mechanism, we can enumerate the following rules
of thumb:

1. Each I*Source consumer has to check if the source implements the
IUpdatableSource interface and, in positive case, invoke its updateSource()
method before reading data.

2. When updated, each I*Source source has to check current simulation time and
perform the update only if the time is different from the latest update time.

3. In order to force an I*Source object to bypass the time checking, its
checkingTime property must be explicitly set to false (using the
setCheckingTime(false);) instruction.

7

JAS how to documentation Last revision: 14/07/04

4. CrossSection object
The CrossSection object retrieves the variable’s value from each agent contained in a

Java collection. If objects implement the I*Source interface data are read directly, otherwise
they are collected through a type specific reflector (*Invoker).

At every update the cross section its current data cache and creates dynamically a new
array of values, with the same dimension of the source collection.

The CrossSection class provides four implementations to natively support the main
Java data types. The available implementations are:
o CrossSection.Double, which implements the IDoubleArraySource interface;
o CrossSection.Float, which implements the IFloatArraySource interface;
o CrossSection.Integer, which implements the IIntArraySource interface;
o CrossSection.Long, which implements the ILongArraySource interface.

So, for instance, a cross section reading float values has to be created using the
CrossSection.Float constructor. The four implementations support the specific I*ArraySource
interface, in order to provide an array of the specific data type.

If the user wants to collect data only from agents with particular characteristics, she
can adopt the ICollectionFilter interface. Passing to the cross section an object with the
ICollectionFilter interface (via the setFilter() method), it collects only the values from the
agents filtered by the custom filter.

If, for instance, we would like to compute the average income of the only “adult” agents
in the agent list, we have to define a filter as follows:

public class Filter implements ICollectionFilter {
public boolean isFiltered(Object object) {
return (((MyAgent) object).age >= 18);

}
}

Passing an instance of the Filter class to the cross section, we will obtain an array
representing the age of only the “adult” agents.

The CrossSection can be updated directly invoking the updateSource() method or,
through the JAS ISimEventListener interface, by invoking the performAction
(Sim.EVENT_UPDATE) method. See the documentation relative to the jas.engine package for
more details about the ISimEventListener interface.

The CrossSection prevent repetitive updates during a simulation step, as described in
the previous section. If the user wants to bypass the time checking to always force the update,
she has to disable the feature using the following instructions:

CrossSection.Long cs = new CrossSection.Long(anAgent, “aLongVariable”, false);
cs.setCheckingTime(false);

8

JAS how to documentation Last revision: 14/07/04

5. The Series object
The Series is a long time memory data collector. It requires a data I*Source source and

append at each update the value to the list. If objects are I*Source it retrieves data directly,
otherwise it uses a type specific reflector (*Invoker).

The Series class provides four implementations to support natively the main Java data
types. The available implementations are:
o Series.Double, which implements the IDoubleArraySource interface;
o Series.Float, which implements the IFloatArraySource interface;
o Series.Integer, which implements the IIntArraySource interface;
o Series.Long, which implements the ILongArraySource interface.

It means that a series reading long values must be created using the Series.Long
constructor. The four implementations support the specific I*ArraySource. It means that each
cross section is able to return the data array of the specific data type.

The series in not yet a time series, because it does not store the time when data have
been stored. In order to have a time series, the user has to append the series to the
TimeSeries object, which can contain more than one series, synchronizing them with the time.

The Series can be updated directly invoking the updateSource() method, or using the
JAS standard ISimEventListener interface, passing the Sim.EVENT_UPDATE constant. See
the documentation relative to the jas.engine package for details about the ISimEventListener
interface.

The Series prevent repetitive updates during a simulation step, as described
previously. If the user wants to bypass the time checking to always force the update, she has
to disable the feature using the following instructions:

Series.Long s = new Series.Long(anAgent, “aLongVariable”, false);
s.setCheckingTime(false);

WARNING: Disabling the time checking allows a series to append more than one value
per time unit. This may result inconsistent if used in TimeSeries object.

9

JAS how to documentation Last revision: 14/07/04

6. The statistic functions
All the statistic functions manage time checking using an instance of the TimeChecker

class, which avoid the function to be applied more than one time per simulation step. If the
user needs to bypass the time checking, she has to disable the feature.

The following table describes the aim of the *TraceFunction functions which operate on
single source values over time:

Function Description
MinTraceFunction It verifies the source value over time keeping the lowest value ever

received.
MaxTraceFunction It verifies the source value over time keeping the highest value ever

received.
MultiTraceFunctio
n

It computes the minimum, the maximum, the sum, the mean and the
variance by storing the sums and the count of the values received time
by time.

The following table describes the aim of the *ArrayFunction function which operate on
array of source values relative to the current simulation time:

Function Description
MinArrayFunction It finds the lowest value in the array.
MaxArrayFunction It finds the highest value in the array.
MeanVarianceArrayFunct
ion

It computes the average and the variance for the values in the
array.

10

